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Abstract

The kinetic energy release distribution (KERD) for the dissociation of the pyridine ion into C4H4
z1 1 HCN in the

microsecond time window has been experimentally determined and theoretically analyzed by the maximum entropy method.
Less energy is channeled into the reaction coordinate than the statistical estimate because of the action of the “momentum gap
law.” The larger the value of the relative translational momentum of the fragments, the less efficient the exploration of phase
space. The fraction of phase space effectively sampled is estimated to be of the order of 75%. (Int J Mass Spectrom
185/186/187 (1999) 155–163) © 1999 Elsevier Science B.V.
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1. Introduction

For many years, mass spectrometrists have tried to
extract information from a study of the translational
energy released on the dissociation fragments of a
unimolecular reaction. Experimentation provides a
function called the kinetic energy release distribution
(KERD), which expresses the probabilityP(«uE) that
an ion of internal energyE releases when it dissoci-
ates a translational kinetic energy«. E is defined as
the energy in excess of the thermochemical threshold.
Several models have been proposed, including the
important contribution developed by Professor Mi-
chael T. Bowers to whom we are pleased to dedicate

the present article. These methods have been re-
viewed recently by Baer and Hase [1].

The crudest approximation is that provided by the
Rice–Ramsperger–Kassel–Marcus (RRKM) theory. Let
us assume the absence of any reverse activation barrier
along the reaction path. Assume furthermore that no
redistribution of energy takes place beyond the tran-
sition state. Then, the distribution is given by [1, 2]:

P~«uE! 5 N* ~E 2 «!YE
0

E

N* ~E 2 «!d« (1)

whereN*( E) is the density of states of the transition
state.

The crux of the matter concerns the behaviour of
the KERD around« 5 0. In the RRKM-QET (quasi-
equilibrium theory) model, it undergoes a sharp dis-
continuity at the origin. The problem is taken care of
in other theories, which all include conservation of
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angular momentum, developed by Klots [3–7],
Chesnavich and Bowers [8, 9], and by Quack and
Troe [10]: phase space theory, orbiting transition state
theory, and a statistical adiabatic channel model.

The present article is based on a different ap-
proach, denoted surprisal theory and maximum en-
tropy method [11–16]. It has already been applied in
the past to study KERDs of ions [17–20], and is
briefly summarized in the following section.

After a thorough study of the dissociation of the
halogenobenzene cations [21,22] where, essentially, a
simple bond breaking and a loose transition state are
involved, we chose to apply this method to a presum-
ably more complicated dissociation process, the loss
of HCN from the pyridine cation.

2. Maximum entropy formalism

Any nonstatistical effect in a chemical reaction is a
consequence of the existence of dynamical constraints
that prevent uniform exploration of phase space be-
fore dissociation. The purpose of an analysis by the
maximum entropy formalism [11–15] is to identify
these constraints. The latter can result, e.g. from
conservation of linear and angular momenta, from
inefficient coupling among oscillators, and from exit-
channel interactions, i.e. from conversion of transla-
tional into rovibrational energy as the fragments
separate. Briefly, the analysis starts from the so-called
prior distributionP0(«uE), which represents the most
statistical situation, i.e. the (hypothetical) KERD that
would have been measured in the case of totally
unconstrained dynamics. The maximum entropy
method provides the relationship between this prior
distribution and the most probable distribution (i.e.
the one of maximum entropy) compatible with the
available experimental information at our disposal.

The prior distribution is given by [1,11–15,23]:

P0~«uE! 5 Ntr~«! N~E 2 «!YE
0

E

Ntr~«! N~E 2 «!d«

; A~E!Î« N~E 2 «! (2)

whereN(E 2 «) now denotes the density of rovibra-
tional states of the two fragments andNtr(«) is the
three-dimensional translational density of states, pro-
portional to=«.

Just as in phase space theory, the prior distribution
assumes that all the quantum states of the products are
populated with equal probability. However, the con-
servation of the total angular momentum is not
included in our treatment because this requires some
prior knowledge about the reaction mechanism [12,
24]. Therefore,P0(«uE) is calculated subject to en-
ergy conservation only, with a three-dimensional
density of translational states. In this respect, it is
important to note that the prior distribution should not
be regarded as providing a cheap, rapid, and often
inaccurate approximation to the experimentally ob-
served distribution. It should not be “made more
realistic” or “converted into a more correct distribu-
tion” [1] by reducing the number of translational or
rotational degrees of freedom to account for conser-
vation of linear and angular momentum. The basic
idea of the maximum entropy method is not to
calculate a prior distribution that best describes the
experimental situation, but rather to extract informa-
tion from a comparison of the experimental distribu-
tion with a reference state [12]. In other words,
P0(«uE) describes the situation of maximum entropy,
obtained if the distribution were determined by statis-
tics (state counting) alone. Any deviation with respect
to the prior distribution indicates the operation of
dynamical factors, denoted constraints, which results
in a situation of lesser entropy, i.e. in incomplete
phase space sampling. The deviation is measured by
the so-called entropy deficiency denotedDS. It can be
shown [25,26] that the quantity exp(2DS) represents
the fraction of phase space actually sampled by the
reaction products, i.e. in our case, by the dissociation
fragments. This measurement of the extent of phase
space sampling is related to the validity of statistical
theories.

It turns out that the relationship between the
experimentally determined distributionP(«uE) and
the prior distribution is often quite simple. For exam-
ple, we have previously studied the halogen loss
reaction from the halogenobenzene ions [21,22]:

156 P. Urbain et al./International Journal of Mass Spectrometry 185/186/187 (1999) 155–163



C6H5X
z13C6H5

11X z (3)

In that case, the KERD was found to obey the
following equation:

P~«uE! 5 P0~«uE!exp~2l0!exp~2l1Î«! (4)

The quantity«1/2 is therefore calledthe informative
variable or, briefly, theconstraint. Its presence indi-
cates that the internal dynamics is indeed constrained
by the square root of the relative translational energy
of the separating fragments, i.e. by their momentum.
This can be related to the so-called momentum gap
law, as will be discussed in Sec. 5.

In the general case, several constraints may have to
be taken into account. The distributionP(«uE) of
maximal entropy can then be shown to be related to
the prior distribution [Eq. (2)] in the following way
[11–15]:

P~«uE! 5 P0~«uE!expS2l0 2 O
r51

n

lrArD (5)

Thelr are Lagrange parameters and theAr are the
n constraints. This functional form ensures that
P(«uE) is normalized, reproduces the average value
^ Ar& of the constraints obtained from the experimen-
tal distribution,

^ Ar& 5 E
0

E

P~«uE! Ard« (6)

and is otherwise of maximum entropy.
The decisive advantage of the maximum entropy

method is that the functional form of the constraints
can be given a physical significance. A different set of
constraints implies a difference in the reaction mech-
anism.

A related way of comparing the information con-
tained in the experimental distributionP(«uE) with
the prior distribution P0(«uE) is to consider the
surprisalI :

I ~«uE! 5 2lnS P~«uE!

P0~«uE!D 5 l0 1 O
r51

n

lrAr (7)

When integrated over the experimental distribution
P(«uE), the previous equation generates the opposite
of the entropy deficiencyDS:

DS~E! 5 E
0

E

P~«uE! lnS P~«uE!

P0~«uE!Dd«

5 2l0 2 O
r51

n

lr^ Ar& (8)

The entropy deficiency is the difference between
the entropy of the actual distributionP(«uE), denoted
S, and that of the prior, denotedS0:

DS~E! 5 S0~E! 2 S~E! (9)

By definition, the entropyS0 of the prior distribution
is equal to or greater than the entropyS of the
experimental distribution, so that the entropy defi-
ciencyDS is always equal to zero or positive.

The fraction of phase space actually sampled
during the dynamics is given by [25,26]

F 5 exp~2DS! (10)

A value of F equal to unity corresponds to a case
of unconstrained dynamics. The prior and the exper-
imental distributions coincide, so that the entropy
deficiency,DS, is equal to zero. In all other cases,
F , 1.

3. Experiment

The KERDs for the C5H5N
z1 3 C4H4

z1 1 HCN
reaction are deduced from two types of ion kinetic
energy spectra recorded with a forward geometry
AEI-MS9 mass spectrometer. Both the accelerating
voltage scan method [27] and the scanning of the
magnet [28] were used. The first scanning method
allows us to observe dissociations taking place in the
first field-free region (between the ion source exit slit
and the electrostatic analyzer) whereas in the second
one dissociations taking place in the second field-free
region (between the electrostatic analyzer and the
magnet) are monitored.
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The kinetic energy released on the fragments
during the dissociations broadens the ion signal,
which is measured in the laboratory frame. In the
present study, the instrumental broadening as well as
y- andz-discrimination can be neglected (see discus-
sion in [21]), so that the KERDs in the centre-of-mass
frame can be obtained by numerical differentiation of
the measured ion kinetic energy spectrum followed by
a transformation of variables from the laboratory
coordinates to the centre-of-mass coordinates [29–
31]. The differentiation has been done using the
Holmes–Osborne procedure [29]. The electrostatic
analyzer exit slit (b-slit) has been closed to 0.25 mm
to reach an energy resolutionDE/E of 1023, which
makes any deconvolution procedure unnecessary.

Our experiments sample dissociations that occur in
a time window defined by the entry and exit times in
the field-free region, denotedt1 and t2. The corre-
sponding transmission functionT depends on the rate
constant of the dissociation that, in turn, depends on
the internal energy of the molecular ionE:

T@k~E!# 5B$exp@2k~E!t1# 2 exp@2k~E!t2#% (11)

B is a normalization factor.
This means that the dissociating ions sampled are

characterized by an internal energy distribution cor-
responding to theT(E) function. As a result, the
KERD P̃(«) effectively measured in actual experi-
ments is an average over this function:

P̃~«! 5 E
«

`

P~«uE!T~E!dE (12)

In the internal energy range covered byT(E), the
rate constantk(E) has been fitted to the following
empirical form, using literature values [32–34]

k~E! 5 kopt~E/Es!
n (13)

T(E) reaches its maximum at an energy denotedEs

wherek is equal tokopt. Table 1 gives the value of
kopt, Es andn obtained for the different experimental
conditions described below.

In order to shift the time window and thus the
distribution T(E) sampled in our experiments, we
have varied the timest1 andt2 in two different ways:
(1) first, by working at three different translational
energies of the fragment ion in the laboratory frame,
and (2) by using both field-free regions of the mass
spectrometer. The corresponding transmission func-
tions are displayed in Fig. 1.

Accelerating voltage scan spectra have been re-
corded for fragment ion translational energies equal to
1, 3, and 4 keV (in the laboratory frame). Magnet scan
spectra have been measured with an acceleration
voltage equal to 8 kV. The following ion source
conditions were applied. Trap current: 30mA. Elec-
tron energy: 70 eV, except for some magnet scan
spectra for which the electron energy (Ve) has been

Table 1
Time window and most probable internal energyEs, first moments of the KERDs, and values ofl1, DS, ande2DS (at E 5 ES) obtained
for the metastable decomposition C5H5N

z1 3 C4H4
z1 1 HCN. For experiments in the first field-free region (1 FFR), the translational

energy of C4H4
1 in the laboratory frame is mentioned. For those in the second field-free region (2 FFR), the electron impact energyVe is

reported. Experiments in the second field-free region have been conducted with an accelerating voltage of 8 keV. The relative uncertainty
on the average KER̂«& is estimated to be of the order of63%. The uncertainty one2DS is equal to60.03.

2 FFRVe 5 20.8 eV 2 FFRVe 5 70 eV 1 FFR (1 keV) 1 FFR (3 keV) 1 FFR (5 keV)

t1 (ms) 8.06 8.06 1.95 1.49 1.27
t2 (ms) 10.92 10.92 5.28 3.42 2.76
Es (eV) 0.64 0.64 0.80 0.86 0.90
kopt (105 s21) 1.1 1.1 3.0 4.3 5.2
n 4.7 4.7 4.8 4.8 4.8
^«& (eV) 0.048 0.050 0.070 0.056 0.059
^«2& (eV2) 0.0042 0.0044 0.0110 0.0057 0.0063
l1 (eV21/2) 7.5 7.0 6.5 7.5 7.2
DS 0.29 0.26 0.32 0.35 0.33
e2DS 0.75 0.77 0.73 0.71 0.72
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reduced to 20.8 eV in order to eliminate overlap with
more intense signals coming from fragment ions
produced in the ion source. Ion source pressure
(measured at an ion gauge located approximately 15
cm from the ionization chamber): 1024 Pa. Pyridine
provided by Union Chimique Belge (UCB) (purity for
analysis,.99%) was carefully degassed but other-
wise used without further purification.

4. Results

4.1. Surprisal analysis

The main results concerning the distributions ob-
tained under the various experimental conditions de-
scribed in the previous section are summarized in
Table 1. In particular, this table mentions the values of
the first few moments of the distributions. As an
example, the distribution obtained for the dissociation
C5H5N

z1 (8 keV)3 C4H4
z1 1 HCN, taking place in

the second field-free region, is presented in Fig. 2.
In view of the very simple form of the experimen-

tal kinetic energy distributionsP̃(«) (Fig. 2), it was
reasonable to introduce a single constraintA1 in the
maximum entropy method, as was done in the case of
the halogenobenzene ions [21, 22]. Then, Eq. (5)
becomes

P~«uE! 5 P0~«uE!exp~2l0 2 l1A1! (14)

Therefore, once the appropriate constraintA1 has
been identified, the surprisalI (Eq. 7) is linear with
respect toA1.

Since our experiments do not generateP(«uE) for
a single internal energyE but an average over the
transmission functionT(E), P̃(«) [Eq. (12)], an
average surprisal was introduced:

Ĩ 5 2ln@P̃~«!/P̃0~«!# (15)

where P̃(«) is the actual experimental distribution
plotted in solid lines in Fig. 2 and

P̃0~«! 5 E
«

`

P0~«uE!T~E!dE (16)

The prior distributionP0(«uE) has been calculated
according to Eq. (2). The density of internal states
N(E) was calculated with a Beyer–Swinehardt algo-
rithm [35]. Rotational parameters and vibrational
frequencies for the C4H4

z 1 ion, assuming a methyl-
enecyclopropene structure [36–43], were calculated
ab initio at the HF/6-31G* level using theGAUSSIAN 94
set of programs [44].

The average quantityĨ plays an important role in
the determination of the functional form of the con-
straint: a linear variation ofĨ with respect to the
selected constraint is a good indication of its rele-

Fig. 1. Collection efficiencyT(E) [Eq. (11)] for the metastable
dissociations C5H5N

z1 3 C4H4
z1 1 HCN taking place in the first

and in the second field-free regions of the AEI-MS9 mass spec-
trometer. For the dissociations taking place in the first field-free
region, the experiments have been carried out at various transla-
tional energies (in the laboratory frame).

Fig. 2. Experimental KERDP̃(«) and fit to Eq. (17) for the
metastable dissociation C5H5N

z1 (8 keV)3 C4H4
z1 1 HCN taking

place in the second field-free region. In this spectrum, ionization
resulted from 70 eV electron impact.
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vance.Ĩ is plotted as a function of« and of«1/2 for the
reaction C5H5N

z13 C4H4
z1 (4 keV)1 HCN (1 FFR)

in Fig. 3.
The analysis of Fig. 3 shows thatĨ varies in a fairly

linear way when plotted as a function of«1/2 but not
when plotted as a function of«. Similar results have
been obtained for the experiments carried out at 1 and
3 kV and in the second field-free region (Fig. 4). Two
conclusions can be derived. First, the dynamics are
dominated by a single constraint that can be identified
as the translational momentum of the separating
fragments. Second, the Lagrange parameterl1 can be
expected to remain constant in the energy range
sampled by the functionT(E).

It follows that Eq. (4) should here also describe the
KERD, as in the case of the halogenobenzene family.

4.2. Kinetic energy distribution

The next step consists of fitting the observed
KERD to the functional form predicted by the maxi-
mum entropy method, which results from the substi-
tution of Eq. (4) into Eq. (12):

P̃~«! 5 E
«

`

T~E! P0~«uE!exp~2l0 2 l1«1/2!dE

5 E
«

`

dE
T~E!«1/2N~E 2 «!exp~2l1«1/2!

C~E!

(17)

with

C~E! 5
exp~l0!

A~E!

5 E
0

E

d« «1/2 exp~2l1«1/2! N~E 2 «! (18)

Fig. 2 shows that Eq. (17) leads to a very good
least squares fit to the experimental data obtained for
the pyridine ion in the second field-free region (Ve 5

70 eV). Similar results, reported in Table 1, have been
obtained for the other experimental conditions. These
fits, together with the surprisal analysis (Figs. 3 and
4), confirm that the dynamics are dominated by a

Fig. 3. Average surprisalĨ plotted as a function of« (top) and«1/2

(bottom) for the reaction C5H5N
z1 3 C4H4

z1 (4 keV) 1 HCN (1
FFR). The actual [P̃(«)] and prior [P̃0(«)] distributions, as defined
in Eqs. (12) and (16), are also displayed.

Fig. 4. Average surprisalĨ plotted as a function of«1/2 for the
metastable dissociations C5H5N

z1 3 C4H4
z1 1 HCN taking place

in the first and in the second field-free regions.
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single constraint,«1/2, bearing on the momentum of
the separating fragments.

4.3. Entropy deficiency

The entropy deficiency that corresponds to our
kinetic energy distributions at a given internal energy
has the following form [Eq. (8)]:

DS5 S0 2 S5 2l0 2 l1^«1/2& (19)

where^«1/2& is the average of the constraint«1/2 on the
kinetic energy distribution.

The values obtained forDS ande2DS at E 5 Es

for the five time windows investigated are presented
in Table 1. The entropy deficiencye2DS measures the
fraction of phase space sampled by the pair of
fragments with respect to the statistical value. Values
of the order of 75% are obtained.

5. The momentum gap law

In all of the four reactions studied so far, the
appropriate constraint (informative observable) which
controls the KERD involves the square root of the
translational energy. This observation can be related
to the “momentum gap law” which controls the
vibrational predissociation dynamics of excited van
der Waals complexes [45–48]. According to this law,
the couplings that govern the rate of the decay become
zero for high values of the relative translational
kinetic energy. Therefore, the energy in excess of the
thermochemical threshold is preferentially channeled
into rotational or vibrational energy of the separating
fragments. In other words, only a fraction of the
accessible volume in phase space is explored because
states with a large translational energy« are excluded
from the sampling of phase space.

In quantum mechanics, this law has a simple
interpretation. Predissociation processes should be
described in terms of resonances, which are quasi-
bound states above the dissociation threshold coupled
to the fragmentation channels. In the particular case of
a vibrational predissociation, the resonances corre-
spond to a situation where the internal energy is

temporarily trapped (e.g. on the microsecond time
scale as in mass-spectrometric experimentation) in the
vibrational modes other than the reaction coordinate.
The resonances are characterized by their lifetime or
their associated decay width. An important point is
that this width is found to decrease exponentially with
thesquare rootof the kinetic energy of the fragments,
i.e. with the translational momentum [45–47]. It
already becomes zero for values of the momentum
smaller than the maximal value consistent with the
conservation of the total energy. As a result, the final
states characterized by a large relative translational
momentum do not contribute to the experimentally
observed kinetic energy distribution,P̃(«) [48].

The reason for this is that the continuum wave
function, i.e. the one for the unbound relative trans-
lational motion of the pair of fragments, oscillates
with a wavelength that decreases when the transla-
tional momentum increases. This behaviour is de-
picted in Fig. 5, which helps to visualize the overlap
between the quasi-bound and the continuum wave
functions. In more technical terms, the decay width of
a resonant state is proportional to the square of the
coupling element,̂nuVu«&, between the quasi-bound

Fig. 5. Visualization of the momentum gap law. The overlap
integral (and hence the coupling) between a bound wave function
(represented in dashed lines) and that of a pair of fragments is much
smaller when the wave function oscillates rapidly because of its
high translational momentum (solid line) than when it oscillates
gently because of its small momentum (dashed-dotted line). The
inset focuses on the region of space where the overlap integral is
built up.
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wave function,un&, and the isoenergetic state of the
continuum,u«&. The operatorV is the coupling respon-
sible for the predissociation process; its explicit form
can vary from one kind of predissociation to another.
But the important point is that, even ifV can be
expected to be different for different reaction mech-
anisms, the momentum gap law derives from the
analytical form of the wave function of the contin-
uum, and is therefore expected to apply to a large
variety of predissociation processes.

6. Discussion

A comparison between the behaviour of the pyri-
dine ion examined in the present article and that of the
halogenobenzene cations previously studied [21,22]
raises fundamental questions. In the four examples
studied so far, the KERDs, the entropy deficiencies
DS, and the fraction of phase space effectively
sampled (e2DS) are very similar.

It should first be noted that the two types of
reactions involve ions of similar complexities (both
containing an aromatic ring) that fragment in the
metastable region of the mass spectrometer. Our
experimental procedure selects processes occuring in
the microsecond time window so that the sampled rate
constants and decay widths are about the same for all
four reactions. It turns out also that this time window
corresponds to similar internal energies for both the
halogenobenzene cations and the pyridine cation [34]
and therefore the averaging due to the internal energy
distribution T(E) is similar, too. From the small̂«&
value measured for C5H5N

z1, it can be inferred that
the barriers for the isomerization steps, which have to
take place somewhere along the reaction path, lie
below the dissociation asymptote and play a minor
role in the release of kinetic energy on the fragments.

More surprisingly, all of these reactions are con-
trolled by the momentum gap law in spite of conspic-
uous differences in the underlying physics. Both the rate
constant and the KERD depend on long-range forces.
Microscopic reversibility introduces a relationship be-
tween the rate constant and the cross-section for associ-
ation of fragments that, in classical mechanics, is related

to long-range forces [4–6]. Product energy partition-
ing depends therefore on the shape of the potential
energy surface at large internuclear distances [1].

The leading term in the multipole expansion (i.e. the
lowest value ofn in the 2R2n expansion) is not the
same in the four reactions discussed. In the case of the
halogenobenzene cations, one has to deal with a simple
bond cleavage process along a barrierless reaction path.
The long-range forces result from charge-induced-dipole
(2R24) and charge-quadrupole (2R23) interactions
[22]. By contrast, in the case of the pyridine ion, the
long-range forces are expected to involve a charge-
permanent dipole (2R22) interaction. However, in
that case, the reaction coordinate is not easily defined
since the fragmentation must involve a substantial
rearrangement including the rupture of an aromatic
ring and the eventual formation of a methylene
cyclopropene cation [36–43].

What these four reactions have, nevertheless, in
common is that the constraint depends on the momen-
tum, i.e. on the square root of the translational energy.
As discussed in Sec. 5, even if the coupling operator
V differs in the case of the pyridine and the halog-
enobenzene ions, it is not surprising to observe that
the momentum gap law constrains these dissociations,
and hence, that very similar shapes are obtained for
the KERDs. From a chemical point of view, the
reaction mechanisms present obvious differences.
However, from a quantum-mechanical point of view,
the momentum gap law derives from the analytical
form of the wave function of the continuum and
applies to a large variety of processes. It would
presumably apply equally well to dipolar or quadru-
polar long-range interactions.

What has been theoretically analyzed here is the
phase space sampled by the pair of fragments, thus at
an infinite value of the reaction coordinate. Therefore,
the analysis concerns the energy partitioning between
the reaction coordinate and the subset of the internal
vibrational modes. The simple, structureless shape of
the KERD did not allow us to identify more than one
dynamical constraint from a comparison between the
experimental curve and the calculated prior distribu-
tions. The analysis, in all cases studied so far, indi-
cates the action of a systematic effect which prevents
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the energy partitioning between the reaction coordi-
nate and the subset of internal modes from being fully
statistical. The extent of the discrepancy could be
measured; about 25% of the available phase space
remain unexplored. Perfect agreement with the exper-
imental KERD can be obtained using this single
constraint only, together with an assumption of com-
plete energy randomization within the subset of inter-
nal degrees of freedom. Concerning the latter point,
however, no information is in fact available and one
has to remain noncommittal.
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